Eulerian edge sets in locally finite graphs
نویسندگان
چکیده
In a finite graph, an edge set Z is an element of the cycle space if and only if every vertex has even degree in Z. We extend this basic result to the topological cycle space, which allows infinite circuits, of locally finite graphs. In order to do so, it becomes necessary to attribute a parity to the ends of the graph.
منابع مشابه
Orientations of infinite graphs with prescribed edge-connectivity
We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex set (while planar graphs show that G need not contain a subdivision of a simple finite graph of lar...
متن کاملAn Alexandroff topology on graphs
Let G = (V,E) be a locally finite graph, i.e. a graph in which every vertex has finitely many adjacent vertices. In this paper, we associate a topology to G, called graphic topology of G and we show that it is an Alexandroff topology, i.e. a topology in which intersec- tion of every family of open sets is open. Then we investigate some properties of this topology. Our motivation is to give an e...
متن کاملOn (s, t)-supereulerian graphs in locally highly connected graphs
Given two nonnegative integers s and t , a graph G is (s, t)-supereulerian if for any disjoint sets X, Y ⊂ E(G) with |X | ≤ s and |Y | ≤ t , there is a spanning eulerian subgraph H of G that contains X and avoids Y . We prove that if G is connected and locally k-edge-connected, thenG is (s, t)-supereulerian, for any pair of nonnegative integers s and t with s+t ≤ k−1. We further show that if s ...
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 31 شماره
صفحات -
تاریخ انتشار 2011